考虑在联络中心内实现NLP 需要了解这些知识

来源:
浏览次数: 164

  “联络中心的人工智能:了解基本知识”,使用自然语言处理(NLP)与客户进行对话,是在一个联络中心最有效地使用人工智能的方法。NLP支持了网络聊天机器人、语音助手增强IVR功能以及语音计算接口(如Alexa等虚拟助理)的对话式人工智能,这是理解现代联络中心的关键技术。

考虑在联络中心内实现NLP 需要了解这些知识
  NLP包括两个组成部分:自然语言理解(NLU)和自然语言生成(NLG)。NLU将自然语言输入映射成有用的表示,用于处理和分析,而NLG则将表示转换成自然语言。
  在某些方面,这些技术已经过时了。1972年,计算机科学家罗伯特·默瑟(RobertMercer)和彼得·布朗(Peter Brown)提交了他们的第一个NLP相关专利申请。但随着可负担得起的高性能计算平台的出现,这些技术现在可以快速地支持实时响应,以实现舒适的人机交互,并可用于客户参与。在实际操作中,这意味着在不到300毫秒的时间内提供会话响应的能力。
  如果会话接口是你的目标,那么你应该NLU和NLG一起使用。但是,你仍然可以在单独使用这些组件时找到实用程序。例如,要求IVR将资金从一个帐户转移到另一个帐户只需要NLU。音频确认需要NLG。
  理解NLU
  以下是对NLU平台一些功能的描述。
  辨别意图:客户的意图可以通过处理一个完整的话语来辨别。然而,在客户参与环境中,语法完整的句子并不是常见的,因此你需要使用上下文和元数据元素来管理会话,从而获得成功的结论。例如,当试图检索股票报价时,客户可能会问:“告诉我现在的字母表交易是多少?”这台机器捕捉到了这些信息,应用了语境理解,并做出回应:“字母表的交易价格是1055.82美元。”客户的意图是检索股票报价。
  消除歧义:与其他形式的会话AI相比,客户约定不太容易产生不确定性,因此往往不需要经常消除歧义。这是因为交互关注的是一组客户属性、产品或服务,而不是整个宇宙。这并不意味着客户永远不会说一些模棱两可或矛盾的东西,比如“把我的订单发到我的家庭地址,不,让我再想想,请把它发到我的工作地址。”这使得机器可以消除混淆的消息传递。在这种情况下,你需要你的人工智能助手来背书确认:“只是确认一下,你是想把你的订单发到你的工作地址吗?”此确认步骤将为机器提供正确的确认,这可以用来防止在机器学习过程中产生进一步的误解。
  术语提取:每个行业都有一些独特的术语。科技行业更是如此,一个例子就是电话中的“端口”。如果客户想把电话号码从一个手机移动到另一个手机,他可能会说:“请将电话号码410-555-1212从T-Mo发送到下面的SIM卡123-4545-4545-9865.”有了正确的理解,机器将从这个句子中提取单词“port”和SIM值,这样它就可以执行一个机器人程序,将数字移动到新的SIM卡上。类似地,机器将知道“T-Mo”是指载波T-Mobile,并将开始接触,所以数字会被释放到新的载体上。
  翻译:在客户参与环境中使用翻译通常不是一个好主意。相反,最好的选择是选择一个处理语言的NLU/NLG解决方案。例如,将客户的请求从德语翻译成英语,然后用英语处理回复,并将其翻译成德语,这不是好的方法。
  解析:NLP解析的一个流行的例子是对句子的解释:“我看见一个拿着望远镜的女孩。”是我用望远镜去看那个女孩,还是我看到的那个拿着望远镜的女孩?客户约定很少需要解析语句来确定意义,因此,提出一个示例是很困难的。因此,一个解析算法比一个必须拥有的NLP特性更适合于客户参与平台。
  词干:这个过程是用来解释错误的或读错的单词,以及缩短程序来理解意图所需的时间。考虑如下:“我想转移资金(I want to have funds transferred)。”'转移(transferred)'的词干是“转移(transfer)”。如果你调优机器以考虑所有形式的“转移”,那么你就可以节省时间,不必手工编写每一单词的所有形式。
  命名实体提取:之前在我的股票交易示例中涉及到理解意图。在客户询问字母表的股票价格后,他可能会说:“亚马逊怎么样?”这台机器维护了语境,并说:“亚马逊的交易价格是1522.32美元。”“亚马逊怎么样?”可能不是指股票价格,而是关于亚马逊雨林信息的查询请求。通过使用命名实体提取,机器能够提供与会话上下文匹配的响应。
  一些NLP解决方案提供了公开使用的命名实体的详细列表,例如在我的示例中使用的公司名称,但是其他的没有。即使有一个提供的列表,你的业务中的命名实体可能与其他实体不同,因此你需要特别注意构建你的列表。除了公司名称,命名实体列表还应该包括产品、城市、国家、供应商和流程的名称,包括任何可能出现的命名实体,并帮助机器在客户交互过程中提供更快、更准确的响应。
  主题分割:建立一个传统的知识库涉及到一个手工的过程来处理内容和确定主题和子主题。NLP解决方案可以通过一个主题细分过程自动化这个工作,这个过程决定了文档的哪个部分适用于特定的客户请求。为了达到速度的目的,最好提前执行主题分割,并在所有知识内容上生成标记,这样你的机器就能在客户请求时更快地呈现正确的知识。
  辨别情绪:情绪分析在联络中心有很多用途。作为一个提供管理解决方案的关键,很难复制。分析单词和标点可以帮助确定文本交互中的情绪。语音交互在情感分析中增加音高和音量,而视频接口则将面部表情引入分析。一些供应商提供上述所有的服务,但许多供应商没有。如果你对情绪分析感兴趣,那么一定要了解你选择的供应商在这方面的能力。
考虑在联络中心内实现NLP 需要了解这些知识
  内容总结:总结是客户参与环境中一个有趣的工具。对于它的Watson NLU引擎,IBM收取0.003美元来总结一份10,000字符的文档,并总结一个客户的八个字的表达。针对客户交互的NLP解决方案通常是针对这些简短的话语进行调整的。
  在客户服务环境中,摘要总结是一种统计工具。它可以有效地取代呼叫处理过程,为联络中心的运营经理提供接近实时的洞察,了解客户的需求。我知道当我在经营一家药店的福利项目时,我会发现一个NLU的总结工具。例如,某一天下午4点,呼叫量比平常增长三倍。事实证明,这是退休人员去邮箱的时间,而我们的一个杰出的营销人员已经发送了大量的邮件,上面写着:“你的福利可能会受到威胁。”一旦我们发现了这个问题--两个小时之后--我们迅速推出了一个脚本,这样所有的座席都能更有效地处理这些呼叫。如果我们有一个NLU总结工具,我们可以在几分钟内确定这个趋势。
  内容标记:当联络中心使用大量非结构化数据来支持客户交互时,标记内容是必需的。在标签上搜索比在知识库中搜索所有内容要快得多,这意味着座席--虚拟的或真人的--可以比不添加内容标记更快地向客户传递正确的答案。
  分类:分类用于识别某些类型的词。如果你从事抵押贷款服务业务,那么哥伦布可能指的是一个地方,而不是一个人。类似于目的和功能的命名实体,基于NLP的分类法对于具有非常广泛的产品目录的企业来说是很有用的。这些工具可以减少客户在处理成千上万的产品时可能发生的混乱,同时节省时间。
  掌握NLG
  在客户参与中,NLG通常被理解为一个复杂的定向对话实现。接口向用户公开的响应或后续问题是利用NLG创建的。具体来说,NLG处理器将文本公开给用户(如在Web聊天中),或者向用户提供的一种中间技术,像TTS(如在IVR或语音计算中),产生了用户可以听到的语音。
  如果你打算使用语音接口,那么你应该将一些思想引入到TTS(文本到语音)解决方案中。标点、性别、能量、压力、音素长度、语调、音节和声调都可以影响你向客户展示的沟通质量。虽然你可能并不一定想要探索这些因素背后的算法,但是你肯定想要倾听这个接口,并确定什么对你和你的团队来说是好的。
  选择

  如果你仍在阅读,那么你可能正在考虑在你的联络中心内实现NLP。你有很多选择,现在有1000多家公司提供NLP服务。有些具有预先构建的功能,支持我上面描述的特性,而另一些则需要你构建自己的特性。好消息是,随着联络中心技术的发展,没有一种技术是非常昂贵的。但是,有些工具的实现和管理可能比其他的更昂贵。选择最能支持业务的平台或产品是成功的关键。

  原文链接:http://www.ctiforum.com/


  • 相关资讯 More
  • 点击次数: 107
    2021 - 03 - 22
    人们通常认为,良好的客户服务意味着100%的座席都在打电话,让客户尽快与座席通话。与普遍的看法相反,如果你的联络中心是这样工作的,那可能意味着你实际上没有有效地利用你的时间,而且你雇佣了太多的座席。这是呼叫路由可以提供帮助的地方。  呼叫路由是一种联络中心管理功能,其中传入的呼叫被放置在队列中,并根据特定条件转移(换句话说,路由)到座席或自助菜单。呼叫路由系统也被称为自动呼叫分配(ACD)。顾名思义,这些系统致力于自动分配入站呼叫。路由可以基于诸如时间、部门、语言首选项、呼叫量或呼叫复杂性等变量。  为了最有效地优化呼叫路由系统,您需要考虑传入呼叫的上下文以及各个座席的技能。通过优化的呼叫路由,您可以提高首次联络解决率(FCR)和运营的整体生产率。  呼叫的上下文  与其将所有来电尽快转接到下一个可用的座席,不如首先考虑来电背后的原因。通常情况下,你的大部分电话都可以自动化处理,并发送到自助服务,而不是使用宝贵的人力资源。  在大多数情况下,入站操作中至少有3-4种呼叫类型,可以轻松地实现自动化,而无需涉及实时座席。20-40%的入站问题通常可以通过简单地访问相关的客户信息来解决。可以轻松路由到自动自助服务的呼叫包括与包裹交付时间、帐单信息或产品和定价信息相关的呼叫。通过使用自助服务,您可以减少通话量,大大节省人力资源,确保您的座席在最需要的地方使用。  把电话转接给现场座席  当涉及到复杂的呼叫时,主要的问题是:哪个座席能够最有效地处理呼叫?根据呼叫的上下文,将呼叫路由到相应的座席时可以使用多种方法。  大多数现代呼叫路由技术都提供了基于技能的路由选择。此功能使您能够根据指定的条件将呼叫路由到特定的座席或部门。换言之,您将能够将有特定请求的呼叫者引导到具有适当技能集和培训的座席或专门处理其问题的部门。  除了基于技能的路由,您还可以选择使用路由技术创建VIP队列。呼叫路由...
  • 点击次数: 60
    2021 - 03 - 15
    去年三月,新冠疫情爆发使联络中心受到考验。他们几乎立即转变为在家工作(WFH),并面临客户服务请求的激增。一年后,尽管大多数人开始接受处理群众问题的挑战,但许多人仍在努力应对数量增长过快的询问。我现在认为,客户服务面临一个系统性的能力问题。在这个由两部分组成的系列文章中,我将解释这个挑战的含义,并引导您通过技术和组织杠杆来应对它。  容量问题  在WFH过渡的早期,主要的障碍是为座席建立远程工作环境。大多数企业都能迅速做到这一点,但并非所有企业都能做到。虽然流感大流行减少了员工流失,但也使招聘、入职和培训变得更具挑战性。大浪淘沙,留下了与客户服务需求大致相同的座席能力。与此同时,客户咨询量的急剧增加并没有停止。一开始,是关于COVID相关的问题。现在,世界变得越来越倾向于数字化,但即使是数字化进程也仍然需要人类的帮助。  数字化救援  企业已经转向自助服务和自动化,以减少人与人之间的交互。避免打电话的第一步是让客户能够在网上或手机上自助。今天最先进的网络自助服务包括可搜索的帮助中心和页面帮助。帮助中心为客户可能遇到的所有问题提供一站式解决方案,而无需浏览网站或移动应用程序。帮助中心也已经从常见问题(FAQ)演变为可搜索的文章知识库,并可以通过客户相互帮助的论坛进行扩充。  尽管网络和移动应用程序不断提高可用性,提供更多信息,但这还不够。与我交谈的企业一致认为,他们收到的咨询中有50-70%来自无法在线解决问题的沮丧客户。这些联系的主要问题是它们的上下文丢失,因为它们是匿名的,需要从头开始恢复。  企业已经部署了聊天来提供上下文帮助,但人员配置仍然是一个挑战。团队规模很小,这会造成很长的等待时间,并且很难找到所有需要的技能。机器人和会话助理可以在前端聊天,提供一些答案,并缓解反应时间差的问题。虽然这是一个很好的步骤,但只要您能够方便地访问人工,该模型就可以工作。否则,客户付出...
  • 点击次数: 87
    2021 - 03 - 08
    一个运动队从一个剧本开始工作,剧本提供了创造或应对不同环境的策略,并指导每个队员如何发挥他们的作用。同样,联络中心也有解决客户问题和机会的行动手册。随着自助服务的扩展和人工智能的引入,剧本范围需要扩大。  知识管理者  如今,联络中心的剧本中最常见的元素是脚本和知识库,这些脚本和知识库可能由主管或专门的知识管理人员建立和维护。当数据分析师将数据转化为见解时,知识管理人员收集并管理这些见解,决定如何以及在何处最好地使用它们,并建立资产,使其他人可以获得这些见解。一般资产包括:支持客户自助服务的常见问题试剂的罐装和建议响应完整的脚本,指导座席一步一步地完成交互座席搜索的知识库  随着大数据分析和虚拟座席的兴起,知识管理者的工作将发生重大变化。让我们看看其中的一些变化:人工智能现在可以增强建议和响应,以便在实时分析会话上下文的基础上,及时向座席提供建议。数据科学家将向知识管理者寻求用于分析的原始数据,以及作为机器人培训材料使用的见解库。机器人可能会扩充一些现有资产,例如可搜索的知识库,或者公司可能会决定用机器人替换资产。数据科学家将提供丰富的新见解,知识管理者可以在剩余的脚本、知识库和培训模块中部署这些见解。  随着我们的发展,知识管理者变得越来越重要。联络中心需要确保这些岗位上有合适的员工,提供所需的培训,并制定一个良好的流程,以获取知识并将其纳入行动手册,从而使其发挥作用,改善客户服务并降低成本。  教机器人说话--会话设计师  在虚拟座席的世界中,脚本不仅仅是一个会话指南,而且实际上是会话本身。一个人工座席的脚本中的内容不一定适用于机器人,因为人类在破译歧义和上下文方面要比人工智能好得多(尽管人工智能越来越好!)。健谈的设计师不仅把文字放在机器人的嘴里,而且还赋予它个性。  会话设计师需要将三个世界连接起来:问题域客户如何思考和反应机器如何“思考”和反应  他们利用自己的沟...
  • 点击次数: 111
    2021 - 03 - 01
    在今天的联络中心,员工使用来自ACD报告、质量调查和人员配置系统的统计数据来调整路由规则、建议座席辅导计划和调整员工时间表。这些员工中的许多人从联络中心的座席或主管的工作中走出来,甚至可能与联络中心的其他管理人员分担“分析”责任。然而,要想在竞争日益激烈的客户满意度游戏中取得成功,就必须采用不同的方法。  数据是新的石油--数据科学家在联络中心  “数据就是新的石油。它是有价值的,但如果未经提炼就不能真正使用。必须将数据转化为天然气、塑料、化学品等,才能创造一个有价值的实体,推动盈利活动;因此必须对数据进行分解、分析,使其具有价值。”--数据科学家先驱Clive Humby。  数据爆炸正在发生,全球数据总量每3年翻一番,站点也没有尽头。利用这些数据将推动未来的经济。这个领域的专家被称为数据科学家,《哈佛商业评论》(Harvard Business Review)称之为“21世纪最性感的工作”的职业。数据已经给职业体育带来了革命性的变化--只要看看棒球场上的击球手们用“转移”到球场的一边就知道了,这是由于击球手们的统计击球模式造成的。数据也将彻底改变联络中心。  数据通常分为两类:结构化和非结构化。结构化数据长期以来一直是联络中心管理的基础--数据是在一个组织良好的数据库中,可以交叉引用,例如由座席、组和队列组织的通话时间。非结构化数据比会话内容更原始。像聊天和电子邮件这样的数字会话有丰富的文本等待挖掘,随着语音识别技术的进步,语音会话也可以以类似的方式进行挖掘。语音和文本分析可用于破译对话并将其分类到结构化数据库中,例如,为来电者表现出挫败感或座席使用不当语言的互动建立索引。  数据科学家在新兴联络中心的工作是理解所有这些信息,并将其付诸行动以改善业务成果。  分析数据--数据分析师  数据分析师使用专门的分析工具来寻找趋势和获得见解,并帮助设计解决方案。数据分析员在结构...
Copyright ©2017 四川西沃信息技术有限公司
犀牛云提供企业云服务